
LITERATURE CITED 

I. Yu. A. Buevich, "Instability in a self-modeling phase-transltion front," Inzh.-Fiz. Zh., 
40, No. 5, 818-827 (1981). 

2. W. Mullins and R. Sekerka, "Stability of a planar phase interface in crystallization 
of a dilute binary alloy," in: Crystal-Growth Problems [Russian translation], Mir, 
Moscow (1968), pp. 106-126. 

3. J. Cutler and W. Tiller, "Allowance for particle-attachment kinetics to a crystal in 
analyzing the stability of a cylinder crystallizing from a binary melt," in: Crystal- 
Growth Problems [Russian translation], Mir, Moscow (1968), pp. 176-196. 

4. W. Mullins and R. Sekerka, "The morphological stability of a particle growing by diffu- 
sion or heat loss," in: Crystal-Growth Problems [Russian translation], Mir, Moscow 
(1968), pp. 89-105. 

5. Yu. A. Bychkov and S. V. Iordanskii, "Instability of a phase boundary during a phase 
transformation," Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 45-51 (1980). 

6. H.S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press 
(1959). 

7. L.I. Rubinshtein, Stefan's Problem [in Russian], Zinatne, Riga (1967). 
8. I.K. Kikoin (ed.), Tables of Physical Quantities (Handbook) [in Russian], Atomizdat, 

Moscow (1976). 
9. B. Ya. Lyubov, The Theory of Crystallization in Large Volumes [in Russian], Nauka, 

Moscow (1975). 

THERMOELASTIC STABILITY OF COOLED LASER MIRRORS 

V. V. Kharitonov and S. B. Koshelev UDC 539.3:621.375.826 

The article examines the interconnection between permissible thermal stresses, de- 
formations, and thermal loads on laser mirrors fixed by different systems. 

Installations based on powerful lasers contain on the path of the light a large number 
of elements, especially mirrors. On each of them the incident wave front is being distorted. 
Accumulation of distortions on different elements leads to defocusing of the beam and makes 
it unsuitable for practical purposes. The quality of the mirrors, as one of the causes of 
distortion of the wave front in multielement systems, must therefore satisfy particularly 
stringent requirements. Normal deformation{ must not exceed 1/10-1/40 of the wavelength of 
the laser beam [i]. In addition, the transverse temperature gradient in the mirror, which 
is proportional to the absorbed thermal flux, may cause impermissible stresses in it. Thus 
the permissible luminous loads on laser mirrors are limited by the permissible thermal strains 
and stresses. The present article shows how the condition of mounting a plane mirror and the 
intensity of cooling affect the thermal stresses and strains in the mirror and the permissi- 
ble luminous load imposed on the mirror. 

The simplest form of a laser mirror is a plane disk with constant thickness ~ and radius 
R. One surface of the disk is illuminated (heated), and the other surface is cooled by a 
heat carrier with constant heat transfer coefficient ~. The intensity of the irradiation 
is uniform over its entire surface, i.e., it does not depend on the radial coordinate. (The 
case with nonuniform illumination requires a special analysis.) 

We will first examine two limit cases of mounting mirrors: freely supported by a rigid 
base and rigidly secured on its circumference. 

When a mirror is heated by a laser pulse, the pulse duration t is such that the thick- 
ness a/~ of the heated layer (within the time that the pulse acts) is much smaller than the 
thickness 6 of the mirror; the temperature field in it T(x, t) is correlated with the pulse 
energy I (J) by the equation of thermal balance 
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AI = ~R 2 ; pcpT(X, t) dx. (i) 

0 

In consequence of the thermal expansion of the surface layer, the mirror endeavors to bend 
toward the incident luminous flux. If it is not secured along the circumference, then the 
normal deformation at the center in its bending is correlated with the temperature by the 
expression [2] 

--  ~ T (x, t) - -  x dx. ( 2 ) 
0 

This expression was obtained in the quasistatic approximation of the theory of thermoelas- 
ticity, and it is therefore suitable when the duration of the laser pulse is much greater 
than the time 6/c necessary for the sound wave to propagate from the heated to the cooled 
mirror surface. For instance, with 6 = 4 mm, c = 4 km/sec, we must have t >> 10 -6 sec. 

If we limit in (2) the deflection at the end of the pulse effect by the maximum permis- 
sible value of [m] and take into account that aC~-f << 6, we obtain from (i) and (2) the re- 
striction for the pulse energy: 

I - -  g pc p ~[m]. (3) 
3 A~ 

An analogous expression was obtained in [i]. It follows from (3) that the maximum permissi- 
ble pulse energy does not depend on the pulse duration (when t >> 6/c), the area of the mir- 
ror, and the intensity of its cooling, but it increases rapidly with increasing thickness 
of the mirror. Since [m] = X/IO-X/40, the luminous load on the mirror with shortwave lasers 
is bound to be minimal. Among the metals that reflect light well, copper, tungsten, and 
molybdenum have the highest value of the complex pCp/B. It follows from (3), e.g., that 
with a pulse energy of i0 ~ J a copper mirror has to be at least 80 mm thick if A = 2% and 
[~] = 1 ~m (C02 laser). 

In case of stationary illumination of the mirror with uniform density of the thermal 
flux q = AQ/(zR2), a linear temperature field T c + q (I/a + (6 -- x)/k) forms in it, where 
T c is the temperature of the heat carrier. According to the theory of thermoelasticity for 
plates [2], when the temperature field is linear over the thickness of the mirror, there are 
no stresses in the mirror, and it is being bent on account of the thermal expansion of the 
heated surface. If we substitute the linear temperature field into formula (2) and confine 
bending at the center to the permissible value [~], we find the maximum permissible luminous 
load on the mirror (W): 

Q -  quR2 = 2a k [o] 
A A----~- (4) 

Hence it follows that the maximum thermal power absorbed by a freely supported mirror does 
not depend either on the thickness or on the dimensions of the mirror, but only on its ther- 
mophysical properties and the permissible deformation. It follows from Table 1 that with 
[w] = 1 ~m the permissible thermal power amounts all in all to 63-180 W, and luminous power 
in reflection of 99% amounts to 6.3-18 kW. When radiation with shorter waves is used, this 
power will be even lower. 

TABLE I. Some Limit Parameters of Laser Mirrors 
Calculated by Formulas (4)-(6), (8) for [~] = i 
~m, Bi = ~,~ = 1/3 

Metal 
AQ (W) by 
(4) 

Aluminum I 63 Copper 150 
Tungsten 180 
Invar �9 70 

[aT] (~ 

15--25 
13--25 
40--100 

q6 (k W/m) 
by (6) 

lOO 6/R 
by (8) for 
h = 1 

1 
4--6 [ 1,9--2,5 
5--10 f 1,0--I,7 
5--13 1,1--1,8 
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In the other limit case, when the mirror is rigidly secured on its circumference in such 
a way that deformations are impossible either on the circumference, radially, or in the nor- 
mal directions, then according to the theory of thermoelasticity [2], there are no deforma- 
tions at all, ~(r) = 0 with uniform illumination, but thermal compressive stresses arise in 
the mirror; these stresses are proportional to 8EAT/(I-- ~), where AT is the overheating of 
the mirror surface relative to the temperature of the unstressed state. Since the stresses 
must not exceed a maximum permissible value [o] (e.g., the yield strength), there follows 
from this a limitation on overheating of the mirror [AT] < (i - u)[o]/(SE) and on the lumi- 
nous load in the pulsed regime 

I U ~ t  (I - -  ~) pc v b] 
~R~ = 2---7- ~E (5) 

and in the steady-state regime 

i =  ( 1 - - v ) k [ o l  Bi 1 (6) 
~R ~ A~E 1 + Bi 6 

Here it is indispensable to point out that the maximum permissible stresses for the steady- 
state and the pulsed operating regimes of the mirrors may differ in magnitude. Usually, the 
shorter the pulse duration, the larger the permissible stress. However, the question of se- 
lecting the maximum permissible stress in connection with laser mirrors requires a special 
investigation. 

It follows from (5) that the threshold of impulse rupture of a mirror is proportional 
to the square root of the pulse duration; is maximal for copper mirrors and is equal to 5-10 
kJ/m 2 for t = 10 -9 sec and A = 1%. Hence it follows in particular that for laser thermonu- 
clear reactors [3] not less than a 100-m 2 surface of focusing mirrors with I = l0 s J is re- 
quired. 

It can be seen from (6) that the product of the steady-state density of the thermal 
flux in the mirror and the thickness of the mirror (q6) depends only on the properties of 
the material of the mirror (with intense cooling, when Bi > i), it amounts to about i0 kW/m 
(Table i), and the smaller the thickness of the mirror, the larger its thermal and permis- 
sible luminous loads. For instance, a copper mirror 2 mm thick withstands a thermal flux 
of up to 5-10 MW/m 2. However, when the mirror is thinner, a number of new limitations arise. 
Firstly, removal of large heat fluxes by the heat carrier may prove to be impossible (e.g., 
in conseqence of crisis of boiling of the heat carrier). Secondly, thin mirrors are less 
resistant to transverse deformations. We will examine this last question in greater detail. 
A plate, rigidly fixed or pin-supported on its circumference, does not become deformed in the 
absence of transverse forces as long as the compressive stresses in its plane do not excee4 
some critical value [2] 

~ c r =  12 1 - - v  2 ' (7) 

where  • = 4 i n  t he  c a s e  of  r i g i d  f i x i n g  [ 4 ] ,  and i n  c a se  of  p i n  s u p p o r t  t he  v a l u e  of  the  co -  
e f f i c i e n t  •  found  f rom the  s o l u t i o n  of  t h e  t r a n s c e n d e n t a l  e q u a t i o n  [5] Jo ( •  = ( 1 - - ~ ) / •  
J1(• Thus, for ~ = 1/3 we obtain • ~ 2. Therefore, for a pin-supported plate the critical 
stress (of loss of stability) is approximately four times smaller than for a rigidly mounted 

plate. 

With o > Ocr, fixed plates are unstable and bend. The critical stress (7) in its turn 
must not exceed some maximum permissible value bounding the range of elastic deformations, 
Taking into account that the plane of the mirror is not ideal, we limit the critical stress 
(7) by the value n[o], where n = 2-4 is the safety factor for instability. In that case we 
obtain from (7) the condition for the thickness and dimension of a mirror that is thermo- 
elastically stable: 

~ ~ / - - ~ -  (I - -  w z ) - ~ .  (8) 

It follows from Table 1 that with n = I a circular mirror is stable when ~/R > 0.01-0.02. 
With a view to the margin n = 4, its relative thickness 6/R doubles. The expressions (6) and 
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(8) obtained here, which limit the permissible dimensions and thermal fluxes to circular mir- 
rors, enable us to determine the permissible power (W) that is absorbed by a mirror rigidly 
fixed on its circumference: 

4~ k5 Bi 
3 ( l + v ) n  ~ l + B i  (9) 

If we compare expressions (9) and (4), we may conclude that a fixed mirror may, in the range 
of thermoelastic stability, withstand thermal loads approximately ~/[~] times larger than a 
mirror not fixed on its circumference (with good cooling, when Bi > i). For instance, with 
[~] = 1 pm and 6 = i mm, the thermal load (9) is almost i000 times larger than Q from the 
first column of Table i, attaining values of the order of i00 kW. 

When transverse forces act, e.g., due to the pressure difference AP in the heat carrier 
and in the medium surrounding the mirror, a fixed mirror is absolutely unstable. When trans- 
verse and radial stresses act jointly, maximum deflection (normal displacement) at the center 
can be determined from the approximate equation [4] 

(10) 

where 

56 ( 1 _ ~ . ) ;  2C_ 21(l--v) AP ( ]~ ) 4. 
3B--23__9~ %r 2(23--9~) E , 

It follows from Eq. (i0) that when the radial thermal stresses are small (O/Ocr << i) and the 
deformations are small (~/6 << i), the first term on the left-hand side may be neglected. 
Therefore, the displacement of the center of the mirror, as in the isothermal case, is 
proportional to the pressure difference AP: 

r = 3(1--v)16 APE (R)  4" (11) 

However, when the thermal stresses in the plane of the mirror are close to critical (7), i.e., 
the coefficient B = 0 in Eq. (i0), then the deformation of the mirror increases in accordance 
with the expression 

co [ 21(l--v)  AP ( R )4] 1/3 
6 2(23--9v) " E ~ " (12) 

In the general case, for D = C 2 + B ~ > 0, i.e., when the radial stresses do not exceed the 
critical ones (o < Ocr), the solution of Eq. (i0) has the form 

(o = (} / -DJr-  C) 1/3 -- (V-D-- C)I/3.  (13) 
5 

The effect of the transverse pressure AP and of the radial stresses ~176 on the magnitude 
of the deformation of the center of the mirror can be seen in Fig. i. It follows from this 
figure that when there are radial stresses, the deflection of the mirror is one or two or- 
ders of magnitude larger than deflection due only to transverse pressure. 

To reduce radial thermal stresses (with specified thermal flux), it is indispensable 
to reduce the thickness of the reflecting layer, because thereby the temperature gradient 
across the thickness of the mirror is reduced, and to reduce deflections under the effect 
of transverse pressure, rigid supports in the form of ribs, tongues, etc., may be used, 
which is equivalent to reducing the radius of the mirror. In the limit, when the thickness 
of the reflecting layer and of the supports holding it are small, we arrive at the idea of 
cooled mirrors with porous base through which the heat carrier is filtered at great speed 
[6]. However, porous structures are characterized by high hydraulic resistance, in conse- 
quence of which a large pressure gradient AP between the inlet and outlet collectors of the 
heat carrier may arise when the mirror is intensively cooled. As a result, sections of 
the reflecting layer between supports of the body may bend, and on account of that some 
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Fig. I. Effect of radial stresses and of trans- 
verse pressure on the normal deformation of the 
center of a copper mirror. Calculation by form- 
ula (13); ~ calculated by formula (ii) for ~x/6 = 
i0-" (i), 10 -3 (2), 10 -2 (3). 

effective "microroughness" of the mirror surface may be produced. Since the height of the 
"microroughness" must not exceed the specified value [~], there arises a limitation on the 
pressure gradient in the heat carrier and on the geometric dimensions of the porous body. 
We will estimate AP for the limit conditions of fixing the reflecting layer to the porous 
body by a system of parallel bands (when the body is formed by stiffening ribs) and by a sys- 
tem of spots (when the body has a brushlike structure or is made of sintered powders, rings, 
etc.). 

The permissible pressure gradient AP is determined from the solution of the equation of 
a thin plate [2] V4~ = AP/D, where D = E63/12 (l--v=) is the stiffness of the reflecting 
layer. Assuming that the layer is rigidly fixed at the places of contact with the body, we 
find AP for band contact: 

AP = 384 D[coj (14) 
b ~ 

In the case of contact according to the system of regularly spaced circular spots with diame- 
ter d and pitch s we have 

1 4- v O [o~1 1 
AP = 1 0 2 4 -  - - ,  

5 + ,; s~ �9 (~) (15)  

where 

( )+2., ~F(e)= 5 + v  ( l - - e )  ~_}_ 5-53Vl___v 3+Vl__v 

+ 2  1 - - v  1 - - v  e lne e 2 + 2  e l + v  3 + v  
t 1 - - v  1 - - ~  

e lne  

is a function of the relative contact area e = (d/s) 2 of the reflecting layer with the body 
and of the Poisson ratio. The function ~(e) changes from ~ = i for E = 0 to Y = 0 for ~ = I. 
Obviously, with ~ = 0 (point contact) the deformation of the layer is maximal with the speci- 
fied pressure, and with the specified deformation the pressure is minimal. 

The permissible filtration rates of the heat carrier are presented in Fig. 2. The cal- 
culations were carried out by the formula 

AP = ~ pW~ L 
2 d h (16) 
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Fig. 2. Permissible filtration rates of water in 
the porous body of a copper mirror in dependence 
on the distance between collectors and the struc- 
ture of the body: a) powdered; b) brushlike. Cal- 
culation by formulas (15), (16) for ~ = I, [~] = 
0.i ~m. 

The heat carrier was water. The friction coefficients were the following: for the brushlike 
structure $ = 0.I, d h = d, where d is the tongue diameter; for sintered powders ~ = 13-36, 
d h = d, where d is the diameter of the powder particles. 

It follows from Fig. 2 that with increasing distance L between the collectors, the speed 
W greatly decreases. The most stringent are the limitations imposed on the permissible fil- 
tration rate in a mirror body made of sintered powders. This is only natural, because such 
structures have the highest hydraulic resistance. In a body formed by a system of parallel 
ribs there are practically no limitations of AP on the filtration rate (if cavitation is not 
taken into account). 

NOTATION 
o, [~], ~cr, stress, maximum permissible, and critical stress, respectively, in the mir- 

ror; ~, numerical coefficient in (7); E, Young's modulus; ~, Poisson ratio; ~, [~], de- 
formation and permissible deformation, respectively, of the mirror; ~, thickness of mirror; 
R, radius of mirror; dh, hydraulic diameter; b, width of the slit between ribs; L, distance 
between collectors; W, filtration rate of heat carrier; ~, coefficient of hydraulic resis- 
tance; AP, pressure gradient; Jo, J~, Bessel function; X, wavelength of radiation; x, coord- 
inate in direction of depth of mirror; c, speed of sound; t, pulse duration; ~, heat trans- 
fer coefficient; a, thermal diffusivity; p, density; Cp, heat capacity; A, absorption coef- 
ficient; 8, coefficient of thermal expansion; q, heat flux density; Q, luminous load; I, 
pulse energy; k, thermal conductivity; Bi, Biot numer. 
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